## Math 656 • FINAL EXAM • May 13, 2014

In all problems below, use the branch $-\pi \leq \arg z<\pi$ for multivalued functions, unless specified otherwise

1) (8pts) Find all values of $\tanh ^{-1}(i)$.
2) (12pts) Categorize all singularities of the following functions. Examine also a possible singularity at $\mathrm{z}=\infty$ (hint: substitute $\zeta=1 / z$ ). Make sure to explain briefly.
(a) $f(z)=\frac{1}{z^{1 / 4} \sin z}$
(b) $f(z)=\frac{\exp (z)}{\exp (1 / z)}$
(c) $f(z)=\frac{\sin (\pi z)}{\sin ^{2}(\pi / z)}$
3) (12pts) Find the first two dominant terms in the series expansion of $f(z)=\frac{\cos \left(\log _{p}(z)\right)-1}{\sin \pi z}$ around $z=1$. Hint: a shift $z=1+\zeta$ may help. What would be the radius of convergence of the full series around $\mathrm{z}=1$ ?
4) (16pts) Calculate the following integrals, picking the most efficient method for each. Contours are circles of given radius:
(a) $\oint_{|z|==1} \frac{d z}{(\bar{z})^{1 / 4}}$
(b) $\oint_{|z|=2} \frac{\exp (1 / z)}{1-z^{2}} d z$
5) (16pts) Calculate the following two integrals. Carefully explain each step, and make sure to obtain a real answer.
(a) $\int_{0}^{\infty} \frac{d x}{\sqrt{x}(x+1)}$
(b) $\int_{0}^{\infty} \frac{x^{3} d x}{x^{6}+a^{6}} \quad$ ( $a$ is a real constant $)$
6) (12pts) Use Rouche's Theorem to find the number of zeros of $f(z)=4 z^{4}+13 z^{2}+3$ belonging to the following domains: (a) $|z|<1$; (b) $|z|<2$; (c) $1<|z|<2$

## Do two of the last four problems:

7) (12pts) Use the Argument Principle to find the number of roots of $f(z)=2 i-z+z^{2}+z^{3}$ lying in the first quadrant. To do this, sketch the mapping of the relevant quarter-circle (it's quite straightforward).
8) (12pts) Suppose $f(z)$ is an entire function, satisfying inequality $|f(z)|<a+|z|^{k}$ everywhere in the complex plane (here $a>0$ is a real constant). Prove that $f(z)$ is a polynomial. Hint: recall the proof of the Liouville's Theorem using the extended version of Cauchy Integral Formula.
9) (12pts) Indicate domains of convergence of each series:
a) $\sum_{k=0}^{\infty} \frac{\exp (2 z k)}{k!}$
b) $\sum_{k=1}^{\infty}(-1)^{k} \frac{\exp (-z k)}{k}$
10) (12pts) Consider the map $w=z+\frac{1}{z}$. Describe the images of the following sets under this map: (a) unit circle $|z|=1$, (b) circle of radius $2,|z|=2$. (c) exterior of the unit disk, $|z|>1$. Hint: examine Cartesian components of the image, $w=u+i v$
